Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications.
نویسندگان
چکیده
Scanning probe microscopies (SPM) and cantilever-based sensors generally use low-frequency mechanical devices of microscale dimensions or larger. Almost universally, off-chip methods are used to sense displacement in these devices, but this approach is not suitable for nanoscale devices. Nanoscale mechanical sensors offer a greatly enhanced performance that is unattainable with microscale devices. Here we describe the fabrication and operation of self-sensing nanocantilevers with fundamental mechanical resonances up to very high frequencies (VHF). These devices use integrated electronic displacement transducers based on piezoresistive thin metal films, permitting straightforward and optimal nanodevice readout. This non-optical transduction enables applications requiring previously inaccessible sensitivity and bandwidth, such as fast SPM and VHF force sensing. Detection of 127 MHz cantilever vibrations is demonstrated with a thermomechanical-noise-limited displacement sensitivity of 39 fm Hz(-1/2). Our smallest devices, with dimensions approaching the mean free path at atmospheric pressure, maintain high resonance quality factors in ambient conditions. This enables chemisorption measurements in air at room temperature, with unprecedented mass resolution less than 1 attogram (10(-18) g).
منابع مشابه
Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection
High sensitivity magnetoelectric sensors with their electromechanical resonance frequencies < 200 kHz have been recently demonstrated using magnetostrictive/piezoelectric magnetoelectric heterostructures. In this work, we demonstrate a novel magnetoelectric nano-electromechanical systems (NEMS) resonator with an electromechanical resonance frequency of 215 MHz based on an AlN/(FeGaB/Al2O3) × 10...
متن کاملMass sensing with resonating ultra-thin silicon beams detected by a double-beam laser Doppler vibrometer
This paper reports on mass sensing with 33 nm thick single-crystalline cantilevers by a double-beam laser Doppler vibrometer. The resonant frequency of an oscillating thin cantilever beam is very sensitive to a loaded mass. However, the drift of the resonance, due to gas adsorption and mechanical instability, limits the minimum detectable mass in general. Two cantilevers for sensing and its ref...
متن کاملArrays of nanoelectromechanical biosensors functionalized by microcontact printing.
The biofunctionalization of nanoelectromechanical systems (NEMS) is critical for the development of new classes of biosensors displaying improved performance and higher levels of integration. In this paper we propose a modified microcontact process (μCP) in order to biofunctionalize arrays of NEMS with a probe molecule on the active sensing areas together with an anti-fouling layer on the passi...
متن کاملUltra-Sensitive Optical Biosensor Based on Whispering Gallery Modes: The Effect of Buffer Solutions Refractive Index on Their Sensitivity and Performance
Background: Whispering gallery modes (WGM) biosensors are ultrasensitive systems that can measure amount of adsorbed layer onto the micro-cavity surface. They have many applications including protein, peptide growth, DNA and bacteria detection, molecular properties measurements and specific interaction and drug table recognitions due to their high sensitivity, compact size and label free sensin...
متن کاملSensitivity Analysis of Frequency Response of Atomic Force Microscopy in Liquid Environment on Cantilever's Geometrical Parameters
In this paper, the non-linear dynamic response of rectangular atomic force microscopy in tapping mode is considered. The effect of cantilever’s geometrical parameters (e.g., cantilever length, width, thickness, tip length and the angle between the cantilever and the sample's surface in liquid environment has been studied by taking into account the interaction forces. Results indicate that the r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature nanotechnology
دوره 2 2 شماره
صفحات -
تاریخ انتشار 2007